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Free subgroups of 3-manifold groups
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Abstract. We show that any closed hyperbolic 3-manifoldM has a co-final tower of covers

Mi ! M of degrees ni such that any subgroup of �1.Mi / generated by ki elements

is free, where ki � nC
i

and C D C.M/ > 0. Together with this result we prove that

log ki � C1sys1.Mi /, where sys1.Mi / denotes the systole of Mi , thus providing a large

set of new examples for a conjecture of Gromov. In the second theorem C1 > 0 is an

absolute constant. We also consider a generalization of these results to non-compact finite

volume hyperbolic 3-manifolds.
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1. Introduction

Let � < PSL2.C/ be a cocompact Kleinian group and M D H3=� be the

associated quotient space. It is a closed orientable hyperbolic 3-orbifold, it is a

manifold if � is torsion-free. We will call a group � k-free if any subgroup of �

generated by k elements is free. We denote the maximal k for which � is k-free by

Nf r .�/ and we call it the free rank of �. For example, if Sg is a closed Riemann

surface of genus g, then its fundamental group satisfies Nf r.�1.Sg// D 2g�1. In

this note we prove that for any Kleinian group as above there exists an exhaustive

filtration of normal subgroups �i of � such that Nf r .�i / � Œ� W �i �
C , where

C D C.�/ > 0 is a constant. In geometric terms the result can be stated as

follows.

Theorem 1. LetM be a closed hyperbolic 3-orbifold. Then there exists a co-final

tower of regular finite-sheeted coversMi ! M such that

Nf r.�1.Mi // � vol.Mi /
C ;

where C D C.M/ is a positive constant which depends only on M .
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The proof of the theorem is based on the previous results of Baumslag, Shalen

and Wagreich [4, 18], Belolipetsky [5], and Calegari and Emerton [6]. Let

us emphaisize that although some of the results use arithmetic techniques, our

theorem applies to all closed hyperbolic 3-orbifolds. A result of similar flavor but

for another property of 3-manifold groups was obtained by Long, Lubotzky, and

Reid in [15]. Indeed, in some parts our construction comes close to their argument.

Together with Theorem 1 we obtain the following theorem of independent

interest:

Theorem 2. Any closed hyperbolic 3-orbifold admits a sequence of regular

manifold coversMi ! M such that

Nf r .�1.Mi // � .1C "/sys1.Mi /;

where " > 0 is an absolute constant and sys1.Mi / is the length of a shortest closed

geodesic in Mi .

This type of bound was stated by Gromov [8, Section 5.3.A] for hyperbolic

groups in general, but later turned into a conjecture (see [9, Section 2.4]). We refer

to the introduction of [5] for a related discussion and some other references. In [9],

Gromov particularly mentioned that the conjecture is open even for hyperbolic 3-

manifold groups. The first set of examples of hyperbolic 3-manifolds for which

the conjecture is true was presented in [5]. These examples were all arithmetic.

Our theorem significantly enlarges this set.

We review the construction of covers Mi ! M and prove a lower bound

for their systoles in Section 2. Theorems 1 and 2 are proved in Section 3. In

Section 4 we consider a generalization of the results to non-compact finite volume

3-manifolds. Their groups always contain a copy of Z � Z, so have Nf r D 1,

however, we can modify the definition of the free rank so that it becomes non-

trivial for the non-compact manifolds: we define N
0

f r
.�/ to be the maximal k for

which the group � is k-semifree, where � is called k-semifree if any subgroup

generated by k elements is a free product of free abelian groups. With this

definition at hand we can extend Gromov’s conjecture to the groups of finite

volume non-compact manifolds. In Section 4 we prove:

Theorem 3. Any finite volume hyperbolic 3-orbifold admits a sequence of regular

manifold coversMi ! M such that

N
0

f r .�1.Mi // � .1C "/sys1.Mi /;

where " > 0 is an absolute constant.

To conclude the introduction we would like to point out one important detail.

While in Theorems 2 and 3 we have an absolute constant " > 0, the constant in
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Theorem 1 depends on the base manifold. In [5] it was shown that in arithmetic

case C.M/ is also bounded below by a universal positive constant. Existence of

a bound of this type in general remains an open problem.

Question 1. Do there exist an absolute constant C0 > 0 such that for any M in

Theorem 1 we have C.M/ � C0:

2. Preliminaries

Let � < PSL2.C/ be a lattice, i.e. a finite covolume discrete subgroup. By

Mostow–Prasad rigidity, � admits a discrete faithful representation into SL2.C/

with the entries in some (minimal) number field E. Since � is finitely generated,

there is a finite set of primes S inE such that� < SL2.OE;S /, whereOE;S denotes

the ring of S -integers in E.

Following Calegari and Emerton [6], we can consider an exhaustive filtration

of normal subgroups �i of � which gives rise to a co-final tower of hyperbolic

3-manifolds covering H3=�. The subgroups �i are defined as follows. From the

description of � given above it follows that it is residually finite and for all but

finitely many primes p 2 OE there is an injective map �pW� ! SL2.yOE;p/ (where
yOE;p denotes the p-adic completion of the ring of integers ofE). Letp be a rational

prime such that for any prime p in OE which divides p, the correspondent map �p
is injective (this holds for almost all primes p). We can write pOE D p

e1

1 � � � pm
em .

For any j D 1; : : : ; m, the ring yOE;pj
contains Zp as a subring and is a

Zp-module of dimension dj D ejfj , where fj is the degree of the extension

of residual fields ŒOE=pj W Z=pZ�. If we fix j and a basis b
j
1 ; : : : ; b

j

dj
2 yOE;pj

as Zp-module, we have a natural ring homomorphism  j W yOE;pj
! Mdj �dj

.Zp/

given by  j .x/ D .xrs/ if xb
j
s D

Pdj

rD1 xrsb
j
r .

Let  W
Qm

j D1 SL2.yOE;pj
/ ! GLN .Zp/ be given diagonally by the blocks

 1; : : : ;  m, where N D 2
P

j dj . Let � D  ı
Qm

j D1 �pj
W SL2.OE;S / !

GLN .Zp/. The Zariski closure of the image of � is a group G < GLN .Zp/ of

dimension d � 6 (cf. [6, Example 5.7]). It is a p-adic analytic group which

admits a normal exhaustive filtration

Gi D G \ ker
�

GLN .Zp/ �! GLN .Zp=p
iZp/

�

:

This filtration gives rise to a filtration of � via the normal subgroups �i D
��1.Gi /. The filtration .�i / is exhaustive because � is injective.

Associated to each of the subgroups �i of � is a finite-sheeted cover Mi of

M D H3=�, and by the construction the sequence .Mi / is a co-final tower of

covers ofM . By Minkowski’s lemma, almost all groupsGi are torsion-free, hence
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associated Mi are smooth hyperbolic 3-manifolds. Therefore, when it is needed

we can assume that M is a manifold itself.

We will require a lower bound for the systole ofMi . Such a bound is essentially

provided by Proposition 10 of [10], which can be seen as a generalization of a

result of Margulis [16] (see also [15]). The main difference is that we do not

restrict to arithmetic manifolds. The main technical difference is that while in [op.

cit.] the authors consider matrices with real entries we do it for p-adic numbers,

which requires replacing norm of a matrix by the height of a matrix. This technical

part is more intricate, however, as it is shown below, it does not affect the main

argument.

Lemma 2.1. Suppose M is a compact manifold. Then there is a constant c1 D

c1.M/ > 0 such that sys1.Mi / � c1 log ni , where ni D Œ� W �i �.

Proof. SinceM is compact, we can apply the Milnor–Schwarz lemma. Therefore,

if we fix a point o 2 H3, then � has a finite symmetric set of generators X such

that the map .�; X/ ! H3 given by  7! .o/ is a .C1; C2/ quasi-isometry. This

means that for any pair 1; 2 2 � we have

C1dX .1; 2/ � C2 � d.1.o/; 2.o// �
1

C1

dX .1; 2/C C2;

where d.�; �/ denotes the distance function in H3, dX .1; 2/ D j�1
1 2jX and j jX

is the minimal length of a word in X which represents  . For any i � 1, we define

sys.�i ; X/ D min¹dX .1; / j  2 �in¹1ºº.

Claim 1. Let ıM > 0 be the diameter of M . For any i � 1, we have

sys1.Mi / � C1sys.�i ; X/ � C2 � 2ıM :

To prove the claim, consider the Dirichlet fundamental domainD.o/ of� inH3

centered in o. It is easy to see that any point x 2 D.o/ satisfies d.x; o/ � ıM . Now

let ˛i � Mi be a closed geodesic realizing the systole ofMi . AsMi ! M is a local

isometry, the image of ˛i in M has the same length (counted with multiplicity).

Denote the image by ˛i again. We can suppose that xi 2 D.o/ is a lift of ˛i .0/.

Thus, there exists a unique nontrivial i 2 �i such that sys1.Mi / D d.xi ; i .xi //.

Note that d.xi ; o/ D d.i .xi /; i.o// � ıM , therefore, by the triangle inequality

we have

sys1.Mi / � d.o; i .o// � 2ıM

� C1dX .1; i/ � C2 � 2ıM

� C1sys.�i ; X/ � C2 � 2ıM :

Now our problem is reduced to proving that sys.�i ; X/ grows logarithmically

as a function of Œ� W �i �. In order to do so we use arithmetic of the field E in an

essential way.
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Let S.E/ be the set of all places of E, S1 be the set of archimedean places,

and Sp be the set of places corresponding to the prime ideals p1; : : : ; pm, which

appear in the definition of Mi . For any x 2 E, we define the height of x by

H.x/ D
Q

v2S.E/ max¹1; jxjvº. Recall that for any x; y 2 E and an archimedean

place v, we have jxCyjv � 4max¹jxjv ; jyjvº, and for any non-archimedean place

u, we have jx C yju � max¹jxjv ; jyjuº. Therefore, the height function satisfies

H.x C y/ � 4#S1H.x/H.y/.

We can generalize the definition of height for matrices with entries inE. Thus,

for any M D .mij / 2 SL2.E/, we define H.M/ D
Q

v2S.E/ max¹1; jmij jvº. We

note that H.M/ � max¹H.mij /º.

Claim 2. For any M;N 2 SL2.E/, we have H.MN/ � 4#S1H.M/H.N/.

Indeed, any entry x ofMN can be written as x D auC bt with a; b entries of

M and u; t entries of N . Therefore, for any v 2 S1,

max¹1; jxjvº � 4max¹1; jajv; jbjvº max¹1; jujv; jt jvº

� 4max¹1; jmij jvº max¹1; jnij jvº:

For non-archimedean places we have the same inequality without the factor 4.

Now if MN D .xij /, then these inequalities show that

H.MN/ D
Y

v2S.E/

max¹1; jxij jvº � 4#S1H.M/H.N/:

Next we want to estimate from below the height of  for any nontrivial  2 �i .

Claim 3. There exists a constant C3 > 0 such that for any  2 �in¹1º we have

H./ � C3p
ni , where n D ŒE W Q�.

Indeed, let  D r1
� � � rw./ 2 �i be a nontrivial element with rj

2 X

and w./ D dX .1; /. We now recall the definition of the group �i . If we write

 D
�

a b
c d

�

, then for any l D 1; : : : ; m we have

�

 l .a/  l .b/

 l.c/  l.d/

�

�

�

Idl
0

0 Idl

�

mod .piZp/:

By the definition of  l we have that .a � 1/bl
j ; bb

l
j ; cb

l
j ; .d � 1/bl

j 2 pi yOE;pl
for

any 1 � j � dl . Taking C � D minl;j ¹jbl
j jpl

º > 0, we obtain

C � max¹ja � 1jpl
; jbjpl

; jcjpl
; jd � 1jpl

º � Norm.pl /
�iel ;

for any l D 1; : : : ; m. This is because jpjpl
D Norm.pl/

�el by definition, where

for an ideal I � OE the norm of I is equal to Norm.I / D #.OE=I /.
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Recall that the Product Formula says that for any nonzero x 2 E we have
Q

v jxjv D 1. Since  is nontrivial, at least one of the numbers ¹a� 1; b; c; d � 1º

is not zero. Therefore, if we apply the Product Formula for any nonzero element

in this set, we obtain

max¹H.a � 1/;H.b/;H.c/;H.d � 1/º �

m
Y

lD1

C �Norm.pl /
iei D .C �/mpni :

Moreover, by the estimate of the height of a sum we have

max¹H.a � 1/;H.b/;H.c/;H.d � 1/º � 4#S1 max¹H.a/;H.b/;H.c/;H.d/º;

therefore,

H./ � max¹H.a/;H.b/;H.c/;H.d/º �
.C �/mpni

4#S1

D C3p
ni :

This proves Claim 3.

We can now finish the proof of the lemma. If we take

C4 D 4#S1 max¹H.M/ j M 2 Xº;

we have

C3p
ni � H./ � .4#S1/dX .1;/�1.max¹H.M/ j M 2 Xº/dX.1;/ � C

dX .1;/
4 :

This estimate holds for any nontrivial  2 �i , hence C3p
ni � C

sys.�i ;X/
4 for any i .

On the other hand, there exists a constant C5 > 0 such that Œ� W �i � � C5p
i dim.G/:

These inequalities together imply that

sys.�i ; X/ �
n

dim.G/ log.C4/
log.Œ� W �i �/C

log.C3C
�n

dim G

5 /

log.C4/
:

Since Œ� W �i � ! 1 and sys1.Mi / is bounded below by a positive constant, we

conclude that there exists a constant c1 D c1.o; ıM ; p;  1; : : : ;  m/ D c1.M/ > 0

such that sys1.Mi / � c1 log.Œ� W �i �/ for any i � 1. �

Note that the constant c1 depends on M (cf. Question 1). If M is arithmetic,

then by [13] we can take c1 D 2
3

� � for a small � > 0 assuming ni is sufficiently

large. In general case the argument of [13] does not apply, while the proof of

Lemma 2.1 does not provide a sufficient level of control over the constants.
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3. Proofs of Theorems 1 and 2

Following [5], we define the systolic genus of a manifold M by

sysg.M/ D min¹g j the fundamental group �1.M/ contains �1.Sg/º;

where Sg denotes a closed Riemann surface of genus g > 0.

Let M be a closed hyperbolic 3-manifold with sufficiently large systole

sys1.M/. By [5, Theorem 2.1], we have

log sysg.M/ � c2 � sys1.M/; (1)

where c2 > 0 is an absolute constant (for any ı > 0, assuming sys1.M/ is

sufficiently large, we can take c2 D 1
2

� ı).

The second ingredient of the proof is a theorem of Calegary and Emerton [6],

which implies that for the sequences of covers defined in Section 2 we have

dim H1.Mi ;Fp/ � � � p.d�1/i CO.p.d�2/i / (2)

for some rational constant � ¤ 0. Recall that we have dimension d D dim.G/ � 6

and the degree of the covers Mi ! M grows like pdi . Hence we can rewrite (2)

in the form

dim H1.Mi ;Fp/ � c3vol.Mi /
5=6; (3)

where c3 > 0 is a constant depending on M and we assume that vol.Mi / is

sufficiently large.

We note that in contrast with the previous related work, the theorem of [6]

applies to non-arithmetic manifolds as well as to the arithmetic ones.

Now recall a result of Baumslag–Shalen [4, Appendix]. They show that

if sysg.M/ � k and dim H1.M;Q/ � k C 1, then �1.M/ is k-free. In a

subsequent paper [18], Shalen and Wagreich proved that the same conclusion

holds if sysg.M/ � k and dim H1.M;Fp/ � k C 2 [loc. cit., Proposition 1.8].

We now bring all the ingredients together. Given a closed hyperbolic 3-orb-

ifold M , for the sequence .Mi / of its manifold covers defined in Section 2 we

have

sysg.Mi /� ec2�sys1.Mi / (by (1))

� vol.Mi /
c (by Lemma 2.1);

and

dim H1.Mi ;Fp/ � c3 � vol.Mi /
5=6 (by (3)):

Hence by the theorem from [18] cited above we obtain

Nf r.�1.Mi // � vol.Mi /
C ;
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where C D C.M/ > 0 and we assume that vol.Mi / is sufficiently large. This

proves Theorem 1.

For the second theorem recall that the systole of a hyperbolic 3-manifold is

bounded above by the logarithm of its volume. Indeed, a manifold M with a

systole sys1.M/ contains a ball of radius r D sys1.M/=2. The volume of a ball

in H3 is given by vol.B.r// D �.sinh.2r/� 2r/, hence we get

vol.M/ � �.sinh.sys1.M// � sys1.M// �
�

2
esys1.M /I

vol.M/ � ec�sys1.M /; as sys1.M/ ! 1:

By Lemma 2.1, the systole of the coversMi ! M grows as i ! 1. Therefore, we

can bound both sysg.Mi / and dim H1.Mi ;Fp/ below by an exponential function

of sys1.Mi / with an absolute constant in exponent. Theorem 2 now follows

immediately from the theorem of [18]. �

Remark 3.1. It follows from the proof that for any ı > 0, assuming sys1.Mi / is

large enough, we can take " in Theorem 2 equal to e
1
2

�ı � 1. The same bound

applies for the constant in Theorem 3, which we prove in the next section.

4. Generalization to finite volume hyperbolic 3-manifolds

Let � < PSL2.C/ be a finite covolume Kleinian group. The quotientM D H3=�

is a finite volume orientable hyperbolic 3-orbifold, which can be either closed

or non-compact with a finite number of cusps. The group � is a relatively

hyperbolic group with respect to the cusp subgroups. In this section we discuss a

generalization of Gromov’s conjecture and our results to this class of groups.

We call � a k-semifree group if any subgroup of � generated by k elements is

a free product of free abelian groups. The maximal k for which � is k-semifree is

denoted by N
0

f r
.�/. With this definition, we can generalize Gromov’s conjecture

to relatively hyperbolic groups. Although the injectivity radius of manifolds with

cusps vanish, their systole is still bounded away from zero. Therefore, a natural

generalization of Gromov’s conjecture would be that N0

f r
.�/ is bounded below

by an exponential function of the systole of the associated quotient space M .

Theorem 3, which we prove in this section, can be considered as an evidence

for this conjecture.

We need to modify the definition of the systolic genus of a manifold M in the

following way:

sysg.M/ D min¹g > 1 j the fundamental group �1.M/ contains �1.Sg/º;

where Sg denotes a closed Riemann surface of genus g. We excluded the genus

g D 1 in order to adapt the definition to the non-compact finite volume 3-mani-

folds which otherwise would all have sysg D 1.
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LetM be a finite volume hyperbolic 3-manifold with sufficiently large systole

sys1.M/. By [5, Theorem 2.1], if M is closed, we have

log sysg.M/ � c2 � sys1.M/; (4)

where c2 > 0 is an absolute constant. We now discuss a generalization of this

result to non-compact finite volume 3-manifolds. The first step in the proof of

the theorem in [5] is an application of the theorem of Schoen–Yau and Sacks–

Uhlenbeck, which allows to homotop a �1-injective map of a surface of genus

g > 1 intoM to a minimal immersion. This result was recently generalized to the

finite volume hyperbolic 3-manifolds in the work of Collin–Hauswirth–Mazet–

Rosenberg [7] and Huang–Wang [11] (see in particular [11, Theorem 1.1]). So let

Sg be a closed immersed least area minimal surface inM . In order to establish (4)

for M we can suppose that Sg is embedded. Indeed, since �1.M/ is LERF [2,

Corollary 9.4] there exists a finite covering QM of M such that Sg is embedded

and �1-injective in QM . Moreover, g � sysg. QM/ and sys1.
QM/ � sys1.M/. If

Sg has no accidental parabolic curves, then the systole of Sg with respect to the

induced metric satisfies sys1.Sg/ � sys1.M/ and the rest of the proof in [5] applies

without any changes.

In the presence of accidental parabolics, we can apply the following lemma.

Lemma 4.1 (Compression Lemma). Let M be a non-compact hyperbolic 3-

manifold of finite volume. Suppose that there exists a �1-injective embedded

closed surface Sg � M , for some genus g � 2, such that Sg has an accidental

parabolic simple curve ˛. Then there exist disjoint tori T1; : : : ; Tn � M , one for

each cusp C.Ti / of M , such that the compact 3-manifold M 0 D M n [n
iD1C.Ti/

has a properly incompressible and boundary-incompressible surface Sg0;p with

g0 � g
2

and 1 � p � 2.

Proof. Suppose that ˛ is associated to a parabolic isometry corresponding to a

cusp C D T0 � Œ0;1/ of M , where T0 is a maximal torus. Since Sg is compact

we can consider a torus T D T0 � ¹t0º � C for some t0 > 0 sufficiently large such

that Sg � M n T0 � Œt0;1/. We denote by ˇ � T the corresponding simple curve

homotopic to ˛.

We first show that there exists an embedding f WSg ! M homotopic to the

embedding �WSg ! M such that f is transversal to some torus T1 � C and

f .Sg/\T1 � Œ0;1/ � C is an annulus with boundary curves f .˛0/; f .˛1/, where

˛0; ˛1 are the boundary curves of a collar neighborhood of ˛ in Sg .

As an application of the Jaco–Shalen Annulus Theorem [12, Theorem VIII.13],

there exists an embedding H0W S1 � Œ0; 1� ! M with H.�; 0/ D ˛.�/ and

H.�; 1/ D ˇ.�/ (see [17, Lemma 2.1]). We can suppose that H0 is transversal

to Sg and T and is such that if we denote by A the image H0.S
1 � Œ0; 1�/, then

A \ Sg D ˛ and A \M n T � Œ0;1/ D ˇ.
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Let D be a collar neighborhood of ˛ in Sg contained in a tubular neighborhood

� WE � M ! A such that D \ A D ˛. Since � WE ! A is trivial, we can deform

D into E preserving the boundary and moving ˛ along A. We get a new annulus

D0 � M with @D0 D ˛0 [ ˛1 and D0 \ T D ˇ.

Let  be the diffeomorphism between D and D0 given by the deformation. We

can suppose that  is the identity in a small neighborhood of the boundary. We

now define the map f WSg ! M by f .x/ D x if x … D and f .y/ D  .y/ if

y 2 D. It is a smooth embedding homotopic to the inclusion.

By transversality, for some 0 < t1 < t0 we have a torus T1 D T0 � ¹t1º and a

subannulus yD � D such that f is transversal to T1 and

f .Sg/\MnT1�Œ0;1/ D f .Sgnint. yD// and f .@.Sgnint. yD/// D f .@ yD/ � T1:

This shows that embedding f has the desired properties.

Now, for the torus T1 constructed above, there exist disjoint tori T2; : : : ; Tn

in the cusps of M such that the corresponding cusps C.Tj / \ C.T1/ D ; for all

j D 2; : : : ; n and f .Sg n int. yD// � M 0 D M n [n
iD1C.Ti/, and we have that

f .Sg n int. yD// � M 0 is a proper submanifold of M 0.

Note that f .Sg n int. yD// is connected with two boundary curves if ˛ does not

separate and has two components with a boundary curve if ˛ separates it. In the

latter case we consider the component with the maximal genus. Hence in both

cases we have a surface Sg0;p with g0 � g
2

and 1 � p � 2 and a proper embedding

f WSg0;p ! M 0.

Recall that a properly embedded surface F in a compact 3-manifold N with

boundary is called boundary-compressible if either F is a disk and F is parallel to

a disk in @N , or F is not a disk and there exists a diskD � N such thatD\F D c

is an arc in @D,D\@N D c0 is an arc in @D, with c\c0 D @c D @c0 and c[c0 D @D,

and either c does not separate F or c separates F into two components and the

closure of neither is a disk. Otherwise, F is boundary-incompressible (see [12,

Chapter III]).

Since Sg � M is �1-injective, it follows from the definition and our construc-

tion that Sg0;p � M 0 is incompressible and boundary-incompressible. �

We now apply to Sg0;p a result of Adams and Reid [1, Theorem 5.2]. Since

sys1.M/ D sys1.M
0/, it immediately implies inequality (4).

The theorem of Calegary–Emerton applies to non-cocompact groups as well

as to the cocompact ones.

We finally recall a result of Anderson–Canary–Culler–Shalen [3]. They show

that if sysg.M/ � k and dim H1.M;Fp/ � k C 2 for some prime p, then �1.M/

is k-semifree [loc. cit., Corollary 7.4]. This theorem generalizes the previous

results in [4, 18] to non-compact hyperbolic 3-manifolds. Its proof also makes an

essential use of topology of 3-manifolds.

Similar to Section 3, we bring together all the ingredients considered above.
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Given a finite volume hyperbolic 3-orbifold M , for the sequence .Mi / of its

manifold covers defined in Section 2 we have

sysg.Mi / � ec2�sys1.Mi / (by (4)),

and

dim H1.Mi ;Fp/ � c3 � vol.Mi /
5=6 (by Calegary–Emerton).

The fact that a manifold M with systole sys1.M/ contains a ball of radius

r D sys1.M/=2 is not necessarily true for non-compact finite volume hyperbolic

3-manifolds but it is still possible to bound the volume by an exponential function

of the systole. By Lakeland–Leininger [14, Theorem 1.3], we have

vol.M/ � ec�sys1.M /; as sys1.M/ ! 1

(with c D 3
4

� ı for any ı > 0, assuming sys1.M/ is sufficiently large).

Although we do not have a generalization of Lemma 2.1, we do know that

sys1.Mi / ! 1 with i because the sequence of covers Mi ! M is co-final.

Therefore, we can bound both sysg.Mi / and dim H1.Mi ;Fp/ below by an expo-

nential function of sys1.Mi /with an absolute constant in exponent and Theorem 3

now follows from the theorem of [3]. �
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